1. DATOS GENERALES

Modalidad: PRESENCIAL		Departamento	Departamento:		Área de Conocimiento:	
ESPE LTGA-G RODRIGUEZ LARA		CIENCIA	CIENCIAS EXACTAS		ANALISIS	
Nombre Asignatura:	Período Acadé	Período Académico:				
CÁLCULO VECT	ORIAL	PREGRAD	O S-I MAY 24 - SEP	24		
Fecha Elaboración:		Código:	NRC:	,	Nivel:	
07/05/24 7:5	55	A0303	13507		PREGRADO	
Docente:		'				
TRUJILLO SA	NCHEZ SERGIC	FABRICIO				
sftrujillo@espe.edu.ec						
Unidad de Organización		BÁSICA	·			
Campo de Formación:		FUNDAMENTOS TEC	ÓRICA			
Núcleos Básicos de		NA				
CARGA HO	RARIA POR	COMPONENTES DE	APRENDIZAJE		SESIONES	
DOCENCIA	PRACTICAS	S DE APLICACIÓN Y	APRENDIZAJE	AUTÓNOMO	SEMANALES	
DOCENCIA	EXPE	RIMENTACIÓN	ITACIÓN		2	
48		16	6 80		2	
Fecha Elaboración Fech		Fecha de Actua	alización Fecha d		le Ejecución	
07/04/2020		23/05/202	23/05/2020 30/		/11/2020	

Descripción de la Asignatura:

Cálculo Vectorial es una materia que introduce al estudiante en el ámbito de la matemática superior, mediante el conocimiento progresivo de teoremas, reglas, principios y técnicas para calcular: límites, derivadas y sus aplicaciones, integrales indefinidas, integrales definidas, integrales impropias, integrales múltiples de funciones vectoriales y de varias variables a fin de que haga suyo el lenguaje de las ciencias, como es el caso de la matemática, alrededor de la cual se articula la formación del ingeniero, con ayuda de paquetes computacionales.

Contribución de la Asignatura:

Esta asignatura corresponde a la primera etapa del eje de formación profesional, proporciona al futuro profesional leyes y principios del cálculo vectorial, con el apoyo de asignaturas del área de matemáticas

Resultado de Aprendizaje de la Carrera: (Unidad de Competencia)

NA

Objetivo de la Asignatura: (Unidad de Competencia)

Dotar al estudiante de las herramientas necesarias para resolver problemas prácticos relacionados con su carrera, y que involucran conceptos y leyes fundamentales de: límites, derivadas e integrales de funciones vectoriales, derivadas parciales e integrales múltiples de funciones de varias variables, y de integrales múltiples.

Resultado de Aprendizaje de la Asignatura: (Elemento de Competencia)

El estudiante al terminar el curso de Cálculo Vectorial estará en capacidad de resolver problemas de límites, derivadas e integrales de funciones vectoriales, derivadas parciales e integrales múltiples de funciones de varias variables, y de integrales múltiples, relacionados con su carrera, mediante la utilización rigurosa del método científico, de técnicas y herramientas tecnológicas, fuentes de información científica y cultural actualizadas, dentro del contexto socio-económico que demanda el país, con alta conciencia ciudadana, en búsqueda de la satisfacción de las necesidades de la sociedad ecuatoriana y de su auto realización profesional.

Proyecto Integrador

NA

PERFIL SUGERIDO DEL DOCENTE

TÍTULO Y DENOMINACIÓN

GRADO: Ingeniero

POSGRADO: Magister o PhD. Matemática o afines

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

	CONTENI	DOS			
Unidad 1	Horas/Min:	20:00	HORAS DE TRABAJO AUTÓNOMO		
FUNCIONES VECTORIALES			Prácticas de	Aplicación y Experimentación	
1. VECTORES Y GEOMETRÍA ANALÍTICA EN EL ESPA	CIO.				
1.1 Vectores en R3.					
1.2 Rectas y Planos en el espacio			Tarea 1	Resolver ejercicios en don intervengan rectas y planos en espacio	
2. SUPERFICIES EN R3					
2.1 Superficies cilíndricas y cuádricas			Tarea 2	Graficar superficies cuadráticas cilíndricas	У
3. FUNCIONES VECTORIALES					
3.1 Análisis de dominio, límites, continuidad, gráficas y o	peraciones.				
3.2 Derivación e integración.			Tarea 3	Resolver ejercicios de derivadas integrales de funciones vectoriale	
3.3 Vectores y planos principales de una curva en R3.					
3.4 Longitud de arco.			Tarea 4	Realizar ejercicios del cálculo de longitud de arco de una curva en espacio	
3.5 Curvatura y radio de curvatura					
ACTIVIDADES	DE APRENDI	ZAJE / H	IORAS CLASE		
COMPONENTES DE DOCENCIA				16	
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				5	
HORAS DE TRABAJO AUTONOMO				27	
TOTAL HORAS POR UNIDAD				48	

	CONTENI	DOS		
Unidad 2	Horas/Min:	22:00	HORAS DE	TRABAJO AUTÓNOMO
FUNCIONES DE VARIAS VARIABLES			Prácticas de	Aplicación y Experimentación
1. FUNCIONES DE VARIAS VARIABLES				
1.1 Dominio y rango de una función.				
1.2 Curvas y superficies de nivel.				
1.3 Límites y continuidad de funciones			Tarea 1	Determinar los límites de una función de varias variables
2. DERIVADAS PARCIALES				
2.1 Definición, interpretación geométrica, notación, deriva superior.	adas de orden		Tarea 2	Realizar ejercicios de derivadas parciales de una función de varias variables
3. REGLA DE LA CADENA, DERIVACIÓN IMPLÍCITA				
3.1 Regla de la cadena para una y varias variables indep	endientes.			
3.2 Derivación en forma implícita				
4. DIFERENCIALES.				

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

4.1 Definición, interpretación geométrica, linealización (Cálculos aproximados).				
5. DERIVADA DIRECCIONAL				
5.1 Derivada direccional y Vector gradiente.	Tarea 3	Encontrar el gradient de varias variables pa dirección de máxima v	ra el cálculo de la	
5.2 Ecuación del plano tangente y recta normal a una superficie.				
6. VALORES EXTREMOS DE FUNCIONES DE VARIAS VARIABLES				
6.1 Cálculo de Máximos y mínimos, relativos y absolutos.	Tarea 4	Determinar los valo mínimos de una fu variables	•	
6.2 Multiplicadores de LaGrange con una sola restricción. Extremos condicionados.				
6.3 Problemas de Aplicación.				
ACTIVIDADES DE APRENDIZAJE / H	IORAS CLASE			
COMPONENTES DE DOCENCIA			16	
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				
HORAS DE TRABAJO AUTONOMO				
TOTAL HORAS POR UNIDAD			48	

CONTENIDOS			
Unidad 3 Horas/Min: 22:00	HORAS DE	TRABAJO AUTÓNOMO	
INTEGRALES MÚLTIPLES Y ANÁLISIS VECTORIAL	Prácticas de Aplicación y Experimentación		
1. INTEGRALES MÚLTIPLES			
1.1 Integrales dobles en coordenadas cartesianas, Cambio de variables en la integral múltiple, Jacobiano de una Transformación.			
1.2 Aplicaciones de la integral doble: momentos y centroides de áreas planas. Volumen de cuerpos de revolución mediante el teorema de Pappus, Cálculo de volumen de cuerpos geométricos.	Tarea 1	Realizar ejercicios para el cálculo de momentos de inercia con integrales dobles	
1.3 Integrales triples en coordenadas rectangulares, Cambio de variables a coordenadas cilíndricas y esféricas. El Jacobiano.			
1.4 Aplicaciones de integrales triples: Volumen, masa y centroide de sólidos.	Tarea 2	Realizar ejercicios de cálculo de volumen y centros de masa cor integrales triples	
2. CAMPOS VECTORIALES			
2.1 Rotacional y divergencia de un campo vectorial, Campos conservativos y función potencial			
3. INTEGRAL DE LÍNEA			
3.1 Definición y aplicaciones en campos escalares (Longitud de arco y área de cortinas).			
3.2 Aplicaciones en campos vectoriales (Cálculo de trabajo).			
3.3 Forma diferencial y teorema fundamental.			
3.4 Teorema de Green. Aplicaciones a campos escalares y vectoriales	Tarea 3	Calcular longitudes de arco utilizando el Teorema de Grenn	
4. SUPERFICIES PARAMÉTRICAS.			
4.1 Superficie paramétrica, vector normal principal y ecuación del plano tangente, área de una superficie			
5. INTEGRALES DE SUPERFICIE			
5.1 Integral de superficie en campos escalares, aplicaciones (masa y área de una lámina).	Tarea 4	Calcular áreas mediante integrales de superficie	
5.2 Integral de superficie en campos vectoriales, (cálculo de flujos)			
6. TEOREMA DE STOKES			
6.1 Aplicación en el cálculo del trabajo en R3.			

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

7. TEOREMA DE DIVERGENCIA (GAUSS).	
7.1 Aplicación en el cálculo de flujo resultante	
ACTIVIDADES DE APRENDIZAJE / HORAS	CLASE
COMPONENTES DE DOCENCIA	16
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN	5
HORAS DE TRABAJO AUTONOMO	27
TOTAL HORAS POR UNIDAD	48

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA ASIGNATURA

Metodos de Enseñanza - Aprendizaje

- 1 Talleres
- 2 Clase Magistral
- 3 Resolución de Problemas

Empleo de Tics en los Procesos de Aprendizaje

- 1 Aula Virtual
- 2 Herramientas Colaborativas (Google, drive, onedrives, otros)
- 3 Material Multimedia

4. RESULTADOS DEL APRENDIZAJE, CONTRIBUCIÓN AL PERFIL DEL EGRESO Y TÉCNICA DE

PROYECTO INTEGRADOR DEL NIVEL RESULTADO DE APRENDIZAJE POR UNIDAD CURRICULAR		Niveles de logro: Alta(A), Media (B), C(Baja).	ACTIVIDADES INTEGRADORAS
1.	CALCULA ÁREAS, LONGITUDES, SUPERFICIES DE REVOLUCIÓN DE FUNCIONES EN DIFERENTES SISTEMAS.	Alta A	
2.	ANALIZA FUNCIONES VECTORIALES. CALCULA DERIVADAS PARCIALES. VALORES EXTREMOS. CALCULA INTEGRALES DOBLES Y TRIPLES	Alta A	
3.	CALCULA INTEGRALES DE LÍNEA Y DE SUPERFICIE.	Alta A	

5. DISTRIBUCIÓN DEL TIEMPO

Total	Conferencias	Clases Prácticas	Laboratorios	Clases Debates	Clases Evaluación	Trabajo autonomo del
96	0	84	0	0	12	96

6. TÉCNICAS Y PONDERACION DE LA EVALUACIÓN

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Trabajo Colaborativo	3	3	3
Examen Parcial	7	7	7
Tareas o guías	3	3	3
Resolución de Ejercicios	2	2	2

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Lecciones oral/escrita	5	5	5
TOTAL:	20	20	20

7. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

Titulo	Autor	Edición	Año	Idioma	Editorial
Cálculo de varias variables	Zill, Dennis G	-	2011	spa	Pekín: Mc Graw Hill
Cálculo Vectorial	Marsden, Jerrold E.	-	2004	español	Madrid : Pearson Adisson Wesley
Cálculo II : de varias variables	Larson, Ron	-	2006	spa	México : McGraw Hill Interamericana
CALCULO DE VARIAS VARIABLES 12a ED	THOMAS, GEORGE B.	-	2010	ESPAÑOL	Pearson Educación
CALCULO DE VARIAS VARIABLES 4a ED	ZILL, DENNIS G.	-	2011	ESPAÑOL	MCGRAW-HILL
CALCULO CON GEOMETRIA ANALITICA	LEITHOLD, LOUIS	-	1966	Español	México : Harla

8. BIBLIOGRAFÍA COMPLEMENTARIA

Titulo	Autor	Edición	Año	Idioma	Editorial
Cálculo vectorial	Malakhaltsev, Mikhail	1	2013	Español	México, D. F. : Alfaomega
Calculus	Spivak, M	3	2012	Español	Barcelona : Reverté
Cálculo: varias variables	Rogawski, Jon	2	2012	Español	Barcelona : Reverté
Cálculo en varias variables	Uña Juárez, Isaías	1	2013	Español	México, D. F. : Alfaomega

9. LECTURAS PRINCIPALES

Tema	Texto	Página	URL
Aplicaciones de la integrales	Aplicaciones de la integrales	Todo	http://132.248.164.227/publica ciones/docs/apuntes_matemati cas/31.%20Aplicaciones%20d e%20la%20Integral.pdf
Funciones de varias variables	Funciones de varias variables	Todo	https://www.bibliotechnia.com. mx/portal/visor/web/visor.php

10. ACUERDOS

Del Docente:

- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos
- 3 Esforzarme en conocer con amplitud al campo académico y práctico
- 4 Asistir a clases siempre y puntualmente dando ejemplo al estudiante para exigirle igual comportamiento
- Motivar, estimular y mostrar interés por el aprendizaje significativo de los estudiantes y evaluar a conciencia y con justicia

De los Estudiantes:

- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)

De los Estudiantes:

- Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Ser honesto, no copiar, no mentir
- 5 Firmar toda prueba y trabajo que realizo en conocimiento que no he copiado de fuentes no permitidas

FIRMAS DE LEGALIZACIÓN	
FIRMAD	O Y
SERGIO FABRICIO TRUJILLO SANCHEZ DOCENTE COORD	MIGUEL ANGEL VILLA ZUMBA INADOR DE AREA DE CONOCIMIENTO
VICTOR RUBEN BAUTISTA NARANJO	
DIRECTOR DE DEPARTAMENTO	