1. DATOS GENERALES

Modalidad: PRESENCIAL		Departamento:		Área de Conocimiento:	
ESPE LTGA-G RODRIGUEZ LARA		CIENCIA	CIENCIAS EXACTAS		QUIMICA
Nombre Asignatura:		Período Acadé	emico:		
FÍSICO - QUÍN	/ICA	PREGRAD	O S-I MAY 24 - SEP 2	24	
Fecha Elaboración:		Código:	NRC:		Nivel:
06/06/20 17:	53	A0208	13566		PREGRADO
Docente:		<u>'</u>			,
ORBEA HIN	IOJOSA CARLOS	S FABIAN			
cfor	bea@espe.edu.e	С			
Unidad de Organización		PROFESIONAL			
Campo de Formación:		PRAXIS PROFESION	NAL		
Núcleos Básicos de		3			
CARGA HO	RARIA POR	COMPONENTES DE	APRENDIZAJE		SESIONES
DOOFNOIA	PRACTICAS	S DE APLICACIÓN Y	APRENDIZAJE	AUTÓNOMO	SEMANALES
DOCENCIA	EXPE	RIMENTACIÓN			3
32		32	32		3
Fecha Elaboraci	ón	Fecha de Actua	Fecha de Actualización Fecha de		e Ejecución
16/09/2019		16/09/201	019 18/05/2020		05/2020

Descripción de la Asignatura:

La asignatura de Fundamentos de físico química es un curso teórico – práctico que tiene como propósito proporcionar a los futuros profesionales petroquímicos los conocimientos y criterios fisicoquímicos fundamentales aplicables al desarrollo, manufactura, optimización y control de procesos petroquímicos. El alumno conocerá los aspectos fisicoquímicos de los gases y agentes volátiles, su aplicación en la petroquímica. De igual forma conocerá las variables fisicoquímicas de varios compuestos. Aplica los conceptos y leyes fundamentales de la termodinámica, del equilibrio termodinámico, termoquímica, electroquímica en la resolución de ejercicios y prácticas de laboratorio, organizando y desarrollando el razonamiento, comprendiendo y explicando los procesos que se llevan a cabo en la industria petroquímica.

Contribución de la Asignatura:

La asignatura contribuye a complementar el conocimiento profesional en el área industrial en el campo de la Petroquímica; ya que todo proceso que la industria requiere, aplica bases sólidas de los estados termodinámicos de la materia, gases reales, termoquímica y electroquímica.

Resultado de Aprendizaje de la Carrera: (Unidad de Competencia)

Demuestra pensamiento lógico, aplica conceptos y leyes fundamentales de las ciencias básicas con orden, responsabilidad, honestidad, coherencia y pertinencia sobre principios universales y aplica técnicas de laboratorio y procedimientos creativos como fundamento práctico de la petroquímica.

Objetivo de la Asignatura: (Unidad de Competencia)

Interpretar y resolver problemas de química aplicada en la realidad, aplicando métodos de la investigación, métodos propios de las ciencias, herramientas tecnológicas y variadas fuentes de información científica, técnica y cultural con ética profesional, trabajo equipo y respeto a la propiedad intelectual.

Su estudio se basa en las leyes de la termodinámica clásica y su aplicación a los cambios fisicoquímicos, así como el concepto de equilibrio y la estabilidad de los sistemas. Además estudiar la interpretación molecular de la temperatura y entropía.

Resultado de Aprendizaje de la Asignatura: (Elemento de Competencia)

Calcula la cantidad de energía requerida en procesos de transformación física y química. Determina propiedades físico-químicas de sustancias.

Proyecto Integrador

Estudio de propiedades físico-químicas de compuestos alifáticos y aromáticos a nivel computacional y experimental.

PERFIL SUGERIDO DEL DOCENTE

TÍTULO Y DENOMINACIÓN

GRADO: Químico/Bioquímico/Ingeniero Químico o afín

POSGRADO: Magister o Ph.D. Química/Ing. Química/FísicoQuímica o afín

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

	CONTENIDOS			
Unidad 1	Horas/Min: 22:00	HORAS DE	TRABAJO AUTÓNOMO	
GASES		Prácticas de	Aplicación y Experimentació	ón
PROPIEDADES FISICO QUÍMICAS DE LAS SUSTANO	CIAS Y DEFINICIONES			
MEZCLAS DE GASES IDEALES				
GASES REALES				
ECUACION Y CONSTANTE DE VAN DER WAALS				
ISOTERMAS DE VAN DER WAALS				
ECUACIÓN DE ESTADO REDUCIDA		Tarea 1	Resolución de ejerc ideales y reales	icios para gases
FACTOR DE COMPRESIBILIDAD-METODO GRÁFIC	0	Tarea 2	Resolución de ejer cinética de gases	cicios de teoría
OTRAS ECUACIONES DE GASES REALES				
ACTIVIDADE	ES DE APRENDIZAJE	HORAS CLASI	E	
COMPONENTES DE DOCENCIA				10
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				10
HORAS DE TRABAJO AUTONOMO				12
TOTAL HORAS POR UNIDAD				32

CONTENIDOS					
Unidad 2 Horas/Min: 22:00			HORAS DE TRABAJO AUTÓNOMO		
TERMODINÁMICA Y CALORIMETRÍA			Prácticas de Aplicación y Experimentación		
ENERGIA					
TRABAJO					
CALOR					
LEY CERO DE LA TERMODINAMICA			Tarea 1	Resolución de ejercicios de entalpía y energía interna	
EQUIVALENTE DE TRABAJO Y CALOR					
PRIMERA LEY DE LA TERMODINAMICA					
ENERGÍA INTERNA Y ENTALPIA					
EXPANSION ADIABATICA					
CALORES DE REACCION A VOLUMEN Y PRESION DE HESS.	CONSTANTES.	LEY			
RELACIÓN DE LA ENTALPIA Y LA TEMPERATURA KIRCHOFF)	(ECUACIÓN DE				
SEGUNDA LEY DE LA TERMODINAMICA					

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

INTRODUCCIÓN. PRINCIPIOS DE CLAUSIUS Y KELVIN	Laboratorio 1	Calorimetría, mediant línea http://amrita.olabs.edu 5∼=21&cnt=4	en:
CICLO DE CARNOT	Tarea 2	Resolución de ejercio carnot	cios para ciclo de
ENTROPIA	Tarea 3	Resolución de ejercicio	os de entropía
CALCULO DE ENTROPIA EN TRANSFORMACIONES FISICAS			
CALCULO DE ENTROPIA EN TRANSFORMACIONES QUIMICAS			
CAMBIOS DE ENTROPIA EN FUNCION DE LA PRESIÓN Y TEMPERATURA			
ENTROPIA ABSOLUTA Y TERCERA LEY DE LA TERMODINÁMICA			
ACTIVIDADES DE APRENDIZAJE / H	HORAS CLASE		
COMPONENTES DE DOCENCIA			10
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN			10
HORAS DE TRABAJO AUTONOMO			12
TOTAL HORAS POR UNIDAD			32

(CONTENIDOS			
Unidad 3 Ho	ras/Min: 20:00	0 HORAS DE TRABAJO AUTÓNOMO		
EQUILIBRIO Y ELECTROQUÍMICA		Prácticas de Aplic	cación y Experimentación	
ENERGIAS LIBRES Y CRITERIOS PARA CAMBIOS EXPON EQUILIBRIO. ECUACIONES FUNDAMENTALES. RELACION MAXWELL.				
CANTIDADES PARCIALES MOLARES, POTENCIAL QUIMIC	co			
EQUILIBRIO QUÍMICO				
EQUILIBRIO DE FASES DE UN COMPONENTE				
ECUACIONES DE CLAPEYRON, DE CLAUSIUS Y CLAPEY	RON.	Laboratorio 2	Práctica de laboratorio en línea a través del simulador en: http://amrita.olabs.edu.in/?sub=73&brch =7∼=112&cnt=1	
		Tarea 1	Resolución de ejercicios de equilibrio químico	
		Tarea 2	Resolución de ejercicios de equilibrio químico	
ELECTROQUIMICA				
CELDAS GALVÁNICAS				
FUERZA ELECTROMOTRIZ. POTENCIALES ESTANDAR DI	E REDUCCION.			
ENERGIA LIBRE Y REACCIONES REDOX. ESPONTANEIDA	AD.			
ECUACION DE NERNST				
CELULAS ELECTROLITICAS. LEY DE OHM. LEYES DE FAI	RADAY	Tarea 3	Resolución de ejercicios de energía libred e Gibbsenceldaselectroquímicas	

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

ACTIVIDADES DE APRENDIZAJE / HORAS CLASE				
COMPONENTES DE DOCENCIA	10			
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN	10			
HORAS DE TRABAJO AUTONOMO	12			
TOTAL HORAS POR UNIDAD	32			

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA ASIGNATURA

Met	Metodos de Enseñanza - Aprendizaje				
1	Talleres				
2	Clase Magistral				
3	Estudio de Casos				
4	Resolución de Problemas				
5	Prácticas de Laboratorío				

Empleo de Tics en los Procesos de Aprendizaje

- 1 Video Conferencia
- 2 Software de Simulación
- 3 Aula Virtual
- 4 Herramientas Colaborativas (Google, drive, onedrives, otros)
- 5 Material Multimedia

4. RESULTADOS DEL APRENDIZAJE, CONTRIBUCIÓN AL PERFIL DEL EGRESO Y TÉCNICA DE

RI	ROYECTO INTEGRADOR DEL NIVEL ESULTADO DE APRENDIZAJE POR UNIDAD CURRICULAR	Niveles de logro: Alta(A), Media (B), C(Baja).	ACTIVIDADES INTEGRADORAS
1.	Identifica y describe la importancia delas leyes termodinámicas en lapetroquímica y destaca su importanciapara la formulación, producción ydiseño de productos y procesospetroquímicos.	Alta A	
2.	Describe la importancia de lafisicoquímica así como su origen yobjeto de estudio. Aplica los principalesconceptos de mecánica clásica y lasleyes de los gases. Aplica laspropiedades fisicoquímicas de losgases y sustancias volátiles en elmanejo de procesos y productospetroquímicos.	Alta A	
3.	Destacar la importancia del equilibriode fases para la formulación,producción y estabilidad de procesospetroquímicos. Identifica la importanciade los conocimientos de electroquímicapara el entendimiento de procesos deoxido reducción y corrosión que puedeocurrir en procesos petroquímicos.	Alta A	

CÓDIGO: SGC.DI.321 VERSIÓN: 1.3 FECHA ÚLTIMA REVISIÓN: 23/09/14

6. TÉCNICAS Y PONDERACION DE LA EVALUACIÓN

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Otras formas de evaluación	3	3	3
Examen Parcial	7	7	7
Pruebas oral/escrita	5	5	5
Talleres	2	2	2
Laboratorios/Informes	3	3	3
TOTAL:	20	20	20

7. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

Titulo	Autor	Edición	Año	Idioma	Editorial
FISICOQUIMICA V. I , II 5ED.	LEVINE, IRA N.	-	2004	ESPAÑOL	McGraw-Hill
FISICOQUIMICA 2da Edición	CASTELLAN,GILBERT W.	-	1998	ESPAÑOL	Printed
Tratado de fisicoquimica	Romo, Luis A	-	2004	spa	Quito : Editorial Universitaria

8. BIBLIOGRAFÍA COMPLEMENTARIA

Titulo	Autor	Edición	Año	Idioma	Editorial
Atkins' physical chemistry	Atkins, Peter William, Julio De Paula, and James	10th	2014	English	Oxford university press
Selected problems in physical chemistry: strategies and interpretations	llich, Predrag-Peter	1st	2010	English	Springer Science & Business Media
Physical Chemistry	Ira, Levine	6th	2014	English	McGraw-Hill

9. LECTURAS PRINCIPALES

Tema	Texto	Página	URL
The Universal Gas Constant R	ACS	todo	https://pubs.acs.org/doi/abs/10 .1021/ed080p731
A brief history of thermometry	ACS	todo	https://pubs.acs.org/doi/10.102 1/ed018p358
The Kinetic Molecular Theory and the Weighing of Gas Samples	ACS	todo	https://pubs.acs.org/doi/10.102 1/ed069p558
Boltzmann Distribution and Boltzmann's Hypothesis	ACS	todo	https://pubs.acs.org/doi/10.102 1/ed058p603
A simple model for van der Waals "a"	ACS	todo	https://pubs.acs.org/doi/10.102 1/ed033p459

10. ACUERDOS

Del Docente:


- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- 3 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Esforzarme en conocer con amplitud al campo académico y práctico

Del Docente:

- 5 Asistir a clases siempre y puntualmente dando ejemplo al estudiante para exigirle igual comportamiento
- Motivar, estimular y mostrar interés por el aprendizaje significativo de los estudiantes y evaluar a conciencia y con justicia

De los Estudiantes:

- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- 3 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Ser honesto, no copiar, no mentir
- 5 Firmar toda prueba y trabajo que realizo en conocimiento que no he copiado de fuentes no permitidas
- 6 Colaborar con los eventos programados por la institución e identificarme con la carrera
- 7 Llevar siempre mi identificación en un lugar visible

