1. DATOS GENERALES

Modalidad: PRESENCIAL		Departamento	Departamento:		Área de Conocimiento:	
ESPE LTGA-G RODRIGUEZ LARA		CIENCIAS DE EN	CIENCIAS DE ENERGIA Y MECANICA		TROQUIMICA	
Nombre Asignatura:		Período Acadé	emico:			
ING. DE REACCIONES	S QUÍMICAS	PREGRAD	O S-I MAY 24 - SEP 24	1		
Fecha Elaboración:		Código:	NRC:		Nivel:	
31/03/20 8:5	57	A0606	15370		PREGRADO	
Docente:						
YAGOS AF	RIAS CARLOS JE	ANPIER				
сјуа	gos@espe.edu.e	С				
Unidad de Organización PROFESIONAL				'		
Campo de Formación:		PRAXIS PROFESION	NAL			
Los campos de estudio de la carrera se han estructurado en r conocimiento, que integran las disciplinas, que corresponden núcleos más importantes de la carrera por su naturaleza lógic campo petroquímico					oonden a los	
CARGA HO	RARIA POR	COMPONENTES DE	APRENDIZAJE		SESIONES	
DOCENCIA		CAS DE APLICACIÓN Y APRENDIZAJE AUTÓNOMO (PERIMENTACIÓN		AUTÓNOMO	SEMANALES	
48		48	48		3	
Fecha Elaboraci	ón	Fecha de Actua	Fecha de Actualización		le Ejecución	
27/03/2020		30/03/202	30/03/2020 23/03/2020		/03/2020	

Descripción de la Asignatura:

La Asignatura Ingeniería de Reacciones Químicas fue diseñada tomando en cuenta el currículo de un Petroquímico desde un punto de vista internacional. En la presente Asignatura, el estudiante aprenderá conocimiento fundamental para resolver problemas de Reacciones Químicas, en varios tipos de reactores y con presencia o ausencia de un catalizador. El conocimiento impartido en esta Asignatura permitirá que el estudiante proponga soluciones a requerimientos y desafíos del mercado petroquímico.

Contribución de la Asignatura:

La Asignatura Ingeniería de Reacciones Químicas contribuye con bases sobre reactores ideales, diseño para reacciones simples y múltiples, conceptos de catálisis heterogénea y

recopilación de medidas experimentales, entre otros temas, lo que le pemitirá al estudiante asimilar conocimientos para resolver e investigar problemas de Reacciones Químicas

atractivas desde un punto de vista económico.

Resultado de Aprendizaje de la Carrera: (Unidad de Competencia)

Utiliza la Ecuación General de Balance Molar como la herramienta para obtener las ecuaciones de los reactores.

Aplica balances molares en términos de la concentración, velocidades de flujo molar, o conversión acoplados con métodos numéricos para la resolución de ejercicios.

Comprende la importancia de la aplicación de una metodología de investigación rigurosa al momento de diseñar un experimento con reactores. Explica el desarrollo de una reacción química catalizada y resuelve ejercicios en los que interviene un catalizador.

Objetivo de la Asignatura: (Unidad de Competencia)

Proporcionar al profesional en formación las bases necesarias para que entienda de forma clara los fundamentos de Ingeniería de Reacciones Químicas para que pueda desenvolverse efectivamente en una Empresa Pública o Privada, en un curso de Maestría, Doctorado o Posdoctorado relacionado con la Asignatura.

Resultado de Aprendizaje de la Asignatura: (Elemento de Competencia)

Aplica los conocimientos de química, termodinámica, balance de masa en la solución de problemas relacionados con sistemas de reactores químicos, para obtener soluciones con criterio, en forma sistemática. Selecciona el tipo de reactor químico y diseña su funcionamiento para ser utilizado en aplicaciones petroquímicas.

Proyecto Integrador

Estudio de factibilidad y pertinencia para la implementación de sistemas de transformación alternativos inherentes a las actividades productivas y/o económicas de la región

PERFIL SUGERIDO DEL DOCENTE

TÍTULO Y DENOMINACIÓN

GRADO: Ingeniero Quimico
POSGRADO: Maestria o Ph.D

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

CONTENIDOS				
Unidad 1 Horas/Min: 32:00	HORAS DE TR	ABAJO AUTÓNOMO		
Balances molares, Conversión, Tamaño del Reactor, Estequiometría y Leyes de Velocidad.	Prácticas de Ap	Prácticas de Aplicación y Experimentación		
BALANCES MOLARES				
Velocidad de reacción	Tarea 1	Establecer las difer reactores intermite continuos y reactores	ntes, reactores	
La ecuación general de balance molar	Tarea 2	Describir los tipos de y las constantes de reacción.		
Reactores intermitentes (batch)				
Reactores de flujo continuo				
Reactor continuo de mezcla perfecta (CSTR)				
Reactor tubular (PFR)				
Reactor de lecho empacado (PBR)				
Reactores industriales	Tarea 3	Resumir las aplic estequiometría en reactores.	aciones de la el diseño de	
CONVERSIÓN Y TAMAÑO DEL REACTOR				
Ecuaciones de diseño para reactores intermitentes	Laboratorio 1	Laboratorio del reacto	r CSTR	
Ecuaciones de diseño para reactores de flujo	Laboratorio 2	Laboratorio del reacto	r PFR	
Reactor empacado	Laboratorio 3	Simulación de reacto PFR y PBR (simulac		
Estequiometría y leyes de velocidad				
Orden de la reacción y la ley de velocidad				
Constante de la velocidad de la reacción				
Estequiometría				
ACTIVIDADES DE APRENDIZAJE /	HORAS CLASE			
COMPONENTES DE DOCENCIA			16	
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN			16	
HORAS DE TRABAJO AUTONOMO			16	
TOTAL HORAS POR UNIDAD			48	

CONTENIDOS						
Unidad 2	Horas/Min:	32:00	HORAS DE TRABAJO AUTÓNOMO			
Diseño de Reactores Isotérmicos, Recolección y Análisis de Datos de Velocidad			Prácticas de Aplicación y Experimentación			
DISEÑO DE REACTORES ISOTÉRMICOS						
Estructura de diseño para reactores isotérmicos						

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

Diseño de CSTR, solo, en serie, en paralelo	Tarea 1	Crear una hoja electro el diseño de react perfecta en un sistema y en paralelo.	ores de mezcla	
caída de presión en los reactores	Tarea 2	Crear una hoja electro el diseño de reactor cálculo del balance y CSTR, PFR, PBR.	es de mezcla el	
Síntesis del diseño de una planta química				
Balances de moles en términos de la concentración y los flujos molares				
Balances de moles para CSTR, PFR, reactor empacada y reactores intermitentes	Tarea 3	Sugerir una secuencia la velocidad inicial y		
Microreactores, reactores de membrana				
Operación en estado no estacionario para reactores con agitación				
Recolección y análisis de datos				
Datos de reactor intermitente	null 1	Gira técnica		
Método de velocidades iniciales	Laboratorio 1	Laboratorio de reactor	es CSTR en serie	
Método de las vidas medias	Laboratorio 2	Laboratorio del rea destilación	ctor CSTR con	
Reactores diferenciales	Laboratorio 3	Simulación de reacto en serie y paralelo.	res CSTR y PFR	
ACTIVIDADES DE APRENDIZAJE /	HORAS CLASE			
COMPONENTES DE DOCENCIA				
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN				
HORAS DE TRABAJO AUTONOMO				
TOTAL HORAS POR UNIDAD				

CONTENIDOS					
Unidad 3 Horas/Min: 32:00		TRABAJO AUTÓNOMO			
Reacciones múltiples, Catálisis y Reactores Catalíticos	Prácticas de	Prácticas de Aplicación y Experimentación			
REACCIONES MÚLTIPLES					
Reacciones en paralelo					
Maximización del producto deseado para reacciones en serie	Tarea 1	Describir y comparar los diferentes las reacciones en paralelo y en serie.			
Algoritmo para resolver reacciones complejas					
Reacciones múltiples en un PFR, PBR y CSTR	Tarea 2	Explicar los diferentes métodos de desactivación de los catalizadores e la industria petroquímica.			
Reactores de membrana para mejorar la selectividad en reacciones múltiples					
Mecanismos y rutas de reacción					
Intermediarios activos y leyes de velocidad no elementales					
Fundamentos de las reacciones enzimáticas					
Inhibición de las reacciones enzimáticas	Tarea 3	Investigar el tipo de empaquetamiento de los catalizadores en los diferentes reactores químicos.			
Diseño de reactores heterogéneos					
Catalizadores. Pasos de una reacción catalítica					
Reactores catalíticos					

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

Desactivación del catalizador Laboratorio 1 Laboratorio del reactor					
Síntesis de la ley de velocidad, el mecanismo y el paso limitante de la velocidad	Laboratorio 2	Simulación de read (Laboratorio virtual)	cciones múltiples		
Análisis de datos heterogéneos para el diseño de reactores					
ACTIVIDADES DE APRENDIZAJE / HORAS CLASE					
COMPONENTES DE DOCENCIA					
PRÁCTICAS DE APLICACIÓN Y EXPERIMENTACIÓN					
HORAS DE TRABAJO AUTONOMO					
TOTAL HORAS POR UNIDAD			48		

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA ASIGNATURA

Metodos de Enseñanza - Aprendizaje

- Clase Magistral
- 2 Estudio de Casos
- 3 Resolución de Problemas
- 4 Diseño de proyectos, modelos y prototipos
- 5 Prácticas de Laboratorío

Empleo de Tics en los Procesos de Aprendizaje

- 1 Herramientas Colaborativas (Google, drive, onedrives, otros)
- 2 Software de Simulación
- 3 Aula Virtual

4. RESULTADOS DEL APRENDIZAJE, CONTRIBUCIÓN AL PERFIL DEL EGRESO Y TÉCNICA DE

PROYECTO INTEGRADOR DEL NIVEL RESULTADO DE APRENDIZAJE POR UNIDAD CURRICULAR		Niveles de logro: Alta(A), Media (B), C(Baja).	ACTIVIDADES INTEGRADORAS
1.	Determina los balances molares, conversión, tamaño del reactor, estequiometría y leyes velocidad.	Alta A	Establecer el balance molar de diferentes reactores mediante ejercicios y prácticas de laboratorios establecidos.
2.	Identifica y explica el balance molar en términos de la conversión- flujos molares de reactores continuos, semicontinuos e intermitentes	Alta A	Diseñar reactores en serie o paralelo para aumentar la conversión.
3.	Determina analíticamente las reacciones múltiples, los procesos de catálisis y reactores catalíticos	Alta A	Analizar y establecer el balance molar de reacciones múltiples.

6. TÉCNICAS Y PONDERACION DE LA EVALUACIÓN

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Pruebas oral/escrita	3	3	3
Laboratorios/Informes	4	4	4
Examen Parcial	7	7	7

Técnica de evaluación	1er Parcial	2do Parcial	3er Parcial
Tareas o guías	4	4	4
Estudio de Casos	2	2	2
TOTAL:	20	20	20

7. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

Titulo	Autor	Edición	Año	Idioma	Editorial
Elementos de ingeniería de las reacciones químicas	Fogler, H. Scott	-	2008	Español	Pearson Educación

8. BIBLIOGRAFÍA COMPLEMENTARIA

Titulo	Autor	Edición	Año	Idioma	Editorial
Ingeniería de las Reacciones Químicas	Octave Levenspiel	Tercera	2004	Inglés	Limusa Wiley
Diseño de reactores homogéneos	Ramírez López, Roman	PRIMERA	2015	ESPAÑOL	Cengage Learning

10. ACUERDOS

Del Docente:

- Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- 3 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Esforzarme en conocer con amplitud al campo académico y práctico
- 5 Asistir a clases siempre y puntualmente dando ejemplo al estudiante para exigirle igual comportamiento
- Motivar, estimular y mostrar interés por el aprendizaje significativo de los estudiantes y evaluar a conciencia y con justicia

De los Estudiantes:

- 1 Mantener en todo momento un clima de empatía y consideración entre estudiantes, profesores, administrativos, trabajadores, etc.
- 2 Cumplir con las leyes y reglamentos institucionales y orientar todos los esfuerzos en la dirección de los grandes propósitos de la Universidad (Misión, Visión)
- 3 Cumplir con las obligaciones de estudiantes y docentes para devengar la inversión que hace el estado Ecuatoriano en favor de los mismos.
- 4 Ser honesto, no copiar, no mentir
- 5 Firmar toda prueba y trabajo que realizo en conocimiento que no he copiado de fuentes no permitidas
- 6 Colaborar con los eventos programados por la institución e identificarme con la carrera
- 7 Llevar siempre mi identificación en un lugar visible

